Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.460
1.
Nat Commun ; 15(1): 4087, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744842

Adaptive laboratory evolution experiments provide a controlled context in which the dynamics of selection and adaptation can be followed in real-time at the single-nucleotide level. And yet this precision introduces hundreds of degrees-of-freedom as genetic changes accrue in parallel lineages over generations. On short timescales, physiological constraints have been leveraged to provide a coarse-grained view of bacterial gene expression characterized by a small set of phenomenological parameters. Here, we ask whether this same framework, operating at a level between genotype and fitness, informs physiological changes that occur on evolutionary timescales. Using a strain adapted to growth in glucose minimal medium, we find that the proteome is substantially remodeled over 40 000 generations. The most striking change is an apparent increase in enzyme efficiency, particularly in the enzymes of lower-glycolysis. We propose that deletion of metabolic flux-sensing regulation early in the adaptation results in increased enzyme saturation and can account for the observed proteome remodeling.


Escherichia coli , Proteome , Proteome/metabolism , Proteome/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Directed Molecular Evolution , Glucose/metabolism , Adaptation, Physiological/genetics , Gene Expression Regulation, Bacterial , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Glycolysis/genetics
2.
Protein Eng Des Sel ; 372024 Jan 29.
Article En | MEDLINE | ID: mdl-38713696

Plastic degrading enzymes have immense potential for use in industrial applications. Protein engineering efforts over the last decade have resulted in considerable enhancement of many properties of these enzymes. Directed evolution, a protein engineering approach that mimics the natural process of evolution in a laboratory, has been particularly useful in overcoming some of the challenges of structure-based protein engineering. For example, directed evolution has been used to improve the catalytic activity and thermostability of polyethylene terephthalate (PET)-degrading enzymes, although its use for the improvement of other desirable properties, such as solvent tolerance, has been less studied. In this review, we aim to identify some of the knowledge gaps and current challenges, and highlight recent studies related to the directed evolution of plastic-degrading enzymes.


Directed Molecular Evolution , Protein Engineering , Directed Molecular Evolution/methods , Plastics/chemistry , Plastics/metabolism , Polyethylene Terephthalates/chemistry , Polyethylene Terephthalates/metabolism , Enzymes/genetics , Enzymes/chemistry , Enzymes/metabolism
3.
Nature ; 629(8010): 98-104, 2024 May.
Article En | MEDLINE | ID: mdl-38693411

Photobiocatalysis-where light is used to expand the reactivity of an enzyme-has recently emerged as a powerful strategy to develop chemistries that are new to nature. These systems have shown potential in asymmetric radical reactions that have long eluded small-molecule catalysts1. So far, unnatural photobiocatalytic reactions are limited to overall reductive and redox-neutral processes2-9. Here we report photobiocatalytic asymmetric sp3-sp3 oxidative cross-coupling between organoboron reagents and amino acids. This reaction requires the cooperative use of engineered pyridoxal biocatalysts, photoredox catalysts and an oxidizing agent. We repurpose a family of pyridoxal-5'-phosphate-dependent enzymes, threonine aldolases10-12, for the α-C-H functionalization of glycine and α-branched amino acid substrates by a radical mechanism, giving rise to a range of α-tri- and tetrasubstituted non-canonical amino acids 13-15 possessing up to two contiguous stereocentres. Directed evolution of pyridoxal radical enzymes allowed primary and secondary radical precursors, including benzyl, allyl and alkylboron reagents, to be coupled in an enantio- and diastereocontrolled fashion. Cooperative photoredox-pyridoxal biocatalysis provides a platform for sp3-sp3 oxidative coupling16, permitting the stereoselective, intermolecular free-radical transformations that are unknown to chemistry or biology.


Amino Acids , Biocatalysis , Oxidative Coupling , Photochemical Processes , Amino Acids/biosynthesis , Amino Acids/chemistry , Amino Acids/metabolism , Biocatalysis/radiation effects , Directed Molecular Evolution , Free Radicals/chemistry , Free Radicals/metabolism , Glycine/chemistry , Glycine/metabolism , Glycine Hydroxymethyltransferase/metabolism , Glycine Hydroxymethyltransferase/chemistry , Indicators and Reagents , Light , Oxidative Coupling/radiation effects , Pyridoxal Phosphate/metabolism , Stereoisomerism , Amino Acids, Branched-Chain/chemistry , Amino Acids, Branched-Chain/metabolism
4.
Elife ; 132024 May 01.
Article En | MEDLINE | ID: mdl-38690805

As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.


Escherichia coli , Genome, Bacterial , Escherichia coli/genetics , Escherichia coli/growth & development , Mutation , Transcriptome , Evolution, Molecular , Genetic Fitness , Gene Regulatory Networks , Directed Molecular Evolution
5.
Nat Commun ; 15(1): 3447, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658554

Achieving cost-competitive bio-based processes requires development of stable and selective biocatalysts. Their realization through in vitro enzyme characterization and engineering is mostly low throughput and labor-intensive. Therefore, strategies for increasing throughput while diminishing manual labor are gaining momentum, such as in vivo screening and evolution campaigns. Computational tools like machine learning further support enzyme engineering efforts by widening the explorable design space. Here, we propose an integrated solution to enzyme engineering challenges whereby ML-guided, automated workflows (including library generation, implementation of hypermutation systems, adapted laboratory evolution, and in vivo growth-coupled selection) could be realized to accelerate pipelines towards superior biocatalysts.


Biocatalysis , Protein Engineering , Protein Engineering/methods , Enzymes/metabolism , Enzymes/genetics , Enzymes/chemistry , Machine Learning , Directed Molecular Evolution/methods , Automation , Gene Library
6.
Nat Commun ; 15(1): 3640, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684714

Careful consideration of how we approach design is crucial to all areas of biotechnology. However, choosing or developing an effective design methodology is not always easy as biology, unlike most areas of engineering, is able to adapt and evolve. Here, we put forward that design and evolution follow a similar cyclic process and therefore all design methods, including traditional design, directed evolution, and even random trial and error, exist within an evolutionary design spectrum. This contrasts with conventional views that often place these methods at odds and provides a valuable framework for unifying engineering approaches for challenging biological design problems.


Directed Molecular Evolution , Directed Molecular Evolution/methods , Bioengineering/methods , Biotechnology/methods , Biological Evolution , Synthetic Biology/methods
7.
Cell Rep Methods ; 4(4): 100762, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38631347

Advances in directed-evolution technologies are enabling new strategies to isolate binding proteins that recognize disease-associated states of a target protein. In this issue of Cell Reports Methods, Dobersberger et al. devised a yeast display-based selection scheme to discover proteins that engage the cancer-associated activated state of a receptor to enable design of safe and effective immunotherapies.


Directed Molecular Evolution , ErbB Receptors , Immunotherapy , Humans , Directed Molecular Evolution/methods , ErbB Receptors/metabolism , ErbB Receptors/immunology , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics
8.
Science ; 383(6689): 1312-1317, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38513027

Bacterial multimodular polyketide synthases (PKSs) are giant enzymes that generate a wide range of therapeutically important but synthetically challenging natural products. Diversification of polyketide structures can be achieved by engineering these enzymes. However, notwithstanding successes made with textbook cis-acyltransferase (cis-AT) PKSs, tailoring such large assembly lines remains challenging. Unlike textbook PKSs, trans-AT PKSs feature an extraordinary diversity of PKS modules and commonly evolve to form hybrid PKSs. In this study, we analyzed amino acid coevolution to identify a common module site that yields functional PKSs. We used this site to insert and delete diverse PKS parts and create 22 engineered trans-AT PKSs from various pathways and in two bacterial producers. The high success rates of our engineering approach highlight the broader applicability to generate complex designer polyketides.


Acyltransferases , Bacterial Proteins , Directed Molecular Evolution , Polyketide Synthases , Polyketides , Recombinant Fusion Proteins , Acyltransferases/genetics , Acyltransferases/chemistry , Polyketide Synthases/chemistry , Polyketide Synthases/genetics , Polyketides/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Serratia , Amino Acid Motifs , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics
9.
Science ; 383(6688): eadk4422, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38484051

Conditional protein degradation tags (degrons) are usually >100 amino acids long or are triggered by small molecules with substantial off-target effects, thwarting their use as specific modulators of endogenous protein levels. We developed a phage-assisted continuous evolution platform for molecular glue complexes (MG-PACE) and evolved a 36-amino acid zinc finger (ZF) degron (SD40) that binds the ubiquitin ligase substrate receptor cereblon in complex with PT-179, an orthogonal thalidomide derivative. Endogenous proteins tagged in-frame with SD40 using prime editing are degraded by otherwise inert PT-179. Cryo-electron microscopy structures of SD40 in complex with ligand-bound cereblon revealed mechanistic insights into the molecular basis of SD40's activity and specificity. Our efforts establish a system for continuous evolution of molecular glue complexes and provide ZF tags that overcome shortcomings associated with existing degrons.


Degrons , Directed Molecular Evolution , Proteolysis , Ubiquitin-Protein Ligases , Zinc Fingers , Cryoelectron Microscopy , Thalidomide/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitination , Degrons/genetics , Zinc Fingers/genetics , Proteolysis Targeting Chimera , Directed Molecular Evolution/methods , Humans
10.
Nat Chem ; 16(5): 817-826, 2024 May.
Article En | MEDLINE | ID: mdl-38351380

Catalysis with engineered enzymes has provided more efficient routes for the production of active pharmaceutical agents. However, the potential of biocatalysis to assist in early-stage drug discovery campaigns remains largely untapped. In this study, we have developed a biocatalytic strategy for the construction of sp3-rich polycyclic compounds via the intramolecular cyclopropanation of benzothiophenes and related heterocycles. Two carbene transferases with complementary regioisomer selectivity were evolved to catalyse the stereoselective cyclization of benzothiophene substrates bearing diazo ester groups at the C2 or C3 position of the heterocycle. The detailed mechanisms of these reactions were elucidated by a combination of crystallographic and computational analyses. Leveraging these insights, the substrate scope of one of the biocatalysts could be expanded to include previously unreactive substrates, highlighting the value of integrating evolutionary and rational strategies to develop enzymes for new-to-nature transformations. The molecular scaffolds accessed here feature a combination of three-dimensional and stereochemical complexity with 'rule-of-three' properties, which should make them highly valuable for fragment-based drug discovery campaigns.


Biocatalysis , Polycyclic Compounds , Polycyclic Compounds/chemistry , Polycyclic Compounds/metabolism , Stereoisomerism , Cyclization , Thiophenes/chemistry , Thiophenes/metabolism , Models, Molecular , Directed Molecular Evolution
11.
Chemistry ; 30(16): e202303889, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38288640

Directed evolution stands as a seminal technology for generating novel protein functionalities, a cornerstone in biocatalysis, metabolic engineering, and synthetic biology. Today, with the development of various mutagenesis methods and advanced analytical machines, the challenge of diversity generation and high-throughput screening platforms is largely solved, and one of the remaining challenges is: how to empower the potential of single beneficial substitutions with recombination to achieve the epistatic effect. This review overviews experimental and computer-assisted recombination methods in protein engineering campaigns. In addition, integrated and machine learning-guided strategies were highlighted to discuss how these recombination approaches contribute to generating the screening library with better diversity, coverage, and size. A decision tree was finally summarized to guide the further selection of proper recombination strategies in practice, which was beneficial for accelerating protein engineering.


Directed Molecular Evolution , Protein Engineering , Mutagenesis , Recombination, Genetic , Power, Psychological
12.
Science ; 383(6681): 421-426, 2024 Jan 26.
Article En | MEDLINE | ID: mdl-38271510

The evolution of new function in living organisms is slow and fundamentally limited by their critical mutation rate. Here, we established a stable orthogonal replication system in Escherichia coli. The orthogonal replicon can carry diverse cargos of at least 16.5 kilobases and is not copied by host polymerases but is selectively copied by an orthogonal DNA polymerase (O-DNAP), which does not copy the genome. We designed mutant O-DNAPs that selectively increase the mutation rate of the orthogonal replicon by two to four orders of magnitude. We demonstrate the utility of our system for accelerated continuous evolution by evolving a 150-fold increase in resistance to tigecycline in 12 days. And, starting from a GFP variant, we evolved a 1000-fold increase in cellular fluorescence in 5 days.


DNA Replication , Directed Molecular Evolution , Escherichia coli Proteins , Escherichia coli , Evolution, Molecular , Replicon , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Directed Molecular Evolution/methods , Green Fluorescent Proteins/genetics , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Fluorescence
13.
ACS Synth Biol ; 13(2): 474-484, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38206581

Directed evolution provides a powerful route for in vitro enzyme engineering. State-of-the-art techniques functionally screen up to millions of enzyme variants using high throughput microfluidic sorters, whose operation remains technically challenging. Alternatively, in vitro self-selection methods, analogous to in vivo complementation strategies, open the way to even higher throughputs, but have been demonstrated only for a few specific activities. Here, we leverage synthetic molecular networks to generalize in vitro compartmentalized self-selection processes. We introduce a programmable circuit architecture that can link an arbitrary target enzymatic activity to the replication of its encoding gene. Microencapsulation of a bacterial expression library with this autonomous selection circuit results in the single-step and screening-free enrichment of genetic sequences coding for programmed enzymatic phenotypes. We demonstrate the potential of this approach for the nicking enzyme Nt.BstNBI (NBI). We applied autonomous selection conditions to enrich for thermostability or catalytic efficiency, manipulating up to 107 microcompartments and 5 × 105 variants at once. Full gene reads of the libraries using nanopore sequencing revealed detailed mutational activity landscapes, suggesting a key role of electrostatic interactions with DNA in the enzyme's turnover. The most beneficial mutations, identified after a single round of self-selection, provided variants with, respectively, 20 times and 3 °C increased activity and thermostability. Based on a modular molecular programming architecture, this approach does not require complex instrumentation and can be repurposed for other enzymes, including those that are not related to DNA chemistry.


DNA , Microfluidics , DNA/genetics , Mutation , Catalysis , Directed Molecular Evolution/methods
14.
Science ; 383(6681): 372-373, 2024 Jan 26.
Article En | MEDLINE | ID: mdl-38271527

Orthogonal replication enables rapid continuous biomolecular evolution in Escherichia coli.


DNA Replication , Directed Molecular Evolution , Escherichia coli , Escherichia coli/genetics , Replicon
15.
J Am Chem Soc ; 145(50): 27380-27389, 2023 12 20.
Article En | MEDLINE | ID: mdl-38051911

Enzymes that degrade synthetic polymers have attracted intense interest for eco-friendly plastic recycling. However, because enzymes did not evolve for the cleavage of abiotic polymers, directed evolution strategies are needed to enhance activity for plastic degradation. Previous directed evolution efforts relied on polymer degradation assays that were limited to screening ∼104 mutants. Here, we report a high-throughput yeast surface display platform to rapidly evaluate >107 enzyme mutants for increased activity in cleaving synthetic polymers. In this platform, individual yeast cells display distinct mutants, and enzyme activity is detected by a change in fluorescence upon the cleavage of a synthetic probe resembling a polymer of interest. Highly active mutants are isolated by fluorescence activated cell sorting and identified through DNA sequencing. To demonstrate this platform, we performed directed evolution of a polyethylene terephthalate (PET)-depolymerizing enzyme, leaf and branch compost cutinase (LCC). We identified activity-boosting mutations that substantially increased the kinetics of degradation of solid PET films. Biochemical assays and molecular dynamics (MD) simulations of the most active variants suggest that the H218Y mutation improves the binding of the enzyme to PET. Overall, this evolution platform increases the screening throughput of polymer-degrading enzymes by 3 orders of magnitude and identifies mutations that enhance kinetics for depolymerizing solid substrates.


Directed Molecular Evolution , Enzymes , Polymers , Saccharomyces cerevisiae , Polyethylene Terephthalates , Polymers/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Enzymes/genetics , Enzymes/metabolism
16.
Genome Biol ; 24(1): 254, 2023 11 06.
Article En | MEDLINE | ID: mdl-37932818

We introduce DEQSeq, a nanopore sequencing approach that rationalizes the selection of favorable genome editing enzymes from directed molecular evolution experiments. With the ability to capture full-length sequences, editing efficiencies, and specificities from thousands of evolved enzymes simultaneously, DEQSeq streamlines the process of identifying the most valuable variants for further study and application. We apply DEQSeq to evolved libraries of Cas12f-ABEs and designer-recombinases, identifying variants with improved properties for future applications. Our results demonstrate that DEQSeq is a powerful tool for accelerating enzyme discovery and advancing genome editing research.


Directed Molecular Evolution , Recombinases , Recombinases/genetics , Recombinases/metabolism , Directed Molecular Evolution/methods , Gene Editing/methods , DNA , CRISPR-Cas Systems
17.
Nature ; 623(7989): 1070-1078, 2023 Nov.
Article En | MEDLINE | ID: mdl-37968394

Three billion years of evolution has produced a tremendous diversity of protein molecules1, but the full potential of proteins is likely to be much greater. Accessing this potential has been challenging for both computation and experiments because the space of possible protein molecules is much larger than the space of those likely to have functions. Here we introduce Chroma, a generative model for proteins and protein complexes that can directly sample novel protein structures and sequences, and that can be conditioned to steer the generative process towards desired properties and functions. To enable this, we introduce a diffusion process that respects the conformational statistics of polymer ensembles, an efficient neural architecture for molecular systems that enables long-range reasoning with sub-quadratic scaling, layers for efficiently synthesizing three-dimensional structures of proteins from predicted inter-residue geometries and a general low-temperature sampling algorithm for diffusion models. Chroma achieves protein design as Bayesian inference under external constraints, which can involve symmetries, substructure, shape, semantics and even natural-language prompts. The experimental characterization of 310 proteins shows that sampling from Chroma results in proteins that are highly expressed, fold and have favourable biophysical properties. The crystal structures of two designed proteins exhibit atomistic agreement with Chroma samples (a backbone root-mean-square deviation of around 1.0 Å). With this unified approach to protein design, we hope to accelerate the programming of protein matter to benefit human health, materials science and synthetic biology.


Algorithms , Computer Simulation , Protein Conformation , Proteins , Humans , Bayes Theorem , Directed Molecular Evolution , Machine Learning , Models, Molecular , Protein Folding , Proteins/chemistry , Proteins/metabolism , Semantics , Synthetic Biology/methods , Synthetic Biology/trends
18.
J Mol Biol ; 435(22): 168292, 2023 11 15.
Article En | MEDLINE | ID: mdl-37769963

In protein evolution, diversification is generally driven by genetic duplication. The hallmarks of this mechanism are visible in the repeating topology of various proteins. In outer membrane ß-barrels, duplication is visible with ß-hairpins as the repeating unit of the barrel. In contrast to the overall use of duplication in diversification, a computational study hypothesized evolutionary mechanisms other than hairpin duplications leading to increases in the number of strands in outer membrane ß-barrels. Specifically, the topology of some 16- and 18-stranded ß-barrels appear to have evolved through a loop to ß-hairpin transition. Here we test this novel evolutionary mechanism by creating a chimeric protein from an 18-stranded ß-barrel and an evolutionarily related 16-stranded ß-barrel. The chimeric combination of the two was created by replacing loop L3 of the 16-stranded barrel with the sequentially matched transmembrane ß-hairpin region of the 18-stranded barrel. We find the resulting chimeric protein is stable and has characteristics of increased strand number. This study provides the first experimental evidence supporting the evolution through a loop to ß-hairpin transition.


Bacterial Outer Membrane Proteins , Porins , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Directed Molecular Evolution , Porins/chemistry , Porins/genetics , Protein Domains , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Protein Folding , Protein Conformation, beta-Strand
19.
Nucleic Acids Res ; 51(16): e89, 2023 09 08.
Article En | MEDLINE | ID: mdl-37548398

We describe a novel method for in vitro protein display-click display-that does not depend on maintaining RNA integrity during biopanning and yields covalently linked protein-cDNA complexes from double-stranded input DNA within 2 h. The display is achieved in a one-pot format encompassing transcription, translation and reverse transcription reactions in series. Stable linkage between proteins and the encoding cDNA is mediated by a modified DNA linker-ML-generated via a click chemistry reaction between a puromycin-containing oligo and a cDNA synthesis primer. Biopanning of a click-displayed mock library coupled with next-generation sequencing analysis revealed >600-fold enrichment of target binders within a single round of panning. A synthetic library of Designed Ankyrin Repeat Proteins (DARPins) with ∼1012 individual members was generated using click display in a 25-µl reaction and six rounds of library panning against a model protein yielded a panel of nanomolar binders. This study establishes click display as a powerful tool for protein binder discovery/engineering and provides a convenient platform for in vitro biopanning selection even in RNase-rich environments such as on whole cells.


Directed Molecular Evolution , Peptide Library , DNA/chemistry , DNA, Complementary/genetics , Protein Engineering , Proteins/genetics , Directed Molecular Evolution/methods
20.
Curr Opin Chem Biol ; 76: 102375, 2023 10.
Article En | MEDLINE | ID: mdl-37542745

Directed evolution is a powerful technique that uses principles of natural evolution to enable the development of biomolecules with novel functions. However, the slow pace of natural evolution does not support the demand for rapidly generating new biomolecular functions in the laboratory. Viruses offer a unique path to design fast laboratory evolution experiments, owing to their innate ability to evolve much more rapidly than most living organisms, facilitated by a smaller genome size that tolerate a high frequency of mutations, as well as a fast rate of replication. These attributes offer a great opportunity to evolve various biomolecules by linking their activity to the replication of a suitable virus. This review highlights the recent advances in the application of virus-assisted directed evolution of designer biomolecules in both prokaryotic and eukaryotic cells.


Viruses , Viruses/genetics , Mutation , Directed Molecular Evolution/methods
...